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IMPROVED CONVERGENCE RATES 
FOR INTERMEDIATE PROBLEMS 

CHRISTOPHER BEATTIE AND W. M. GREENLEE 

ABSTRACT. Improved convergence rate estimates are derived for a variant of 
Aronszajn-type intermediate problems that is both computationally feasible and 
convergent for problems with nontrivial essential spectra. In a previous paper 
the authors obtained rate of convergence estimates for this method in terms 
of containment gaps between subspaces. In the present work, techniques for 
estimating relatively unbounded perturbations are refined in order to apply 
the Kato-Temple inequalities. This yields convergence rates for the interme- 
diate operator eigenvalues in terms of squares of containment gaps between 
subspaces. Convergence rate estimates are also obtained for the intermediate 
problem eigenvectors, and comparisons are made with previously known results 
for the method of special choice. 

1. INTRODUCTION 

The method of intermediate problems of Weinstein and Aronszajn (cf. [33]) 
provides a systematic method for generating improvable bounds for eigenvalues 
of selfadjoint operators which are complementary to the Rayleigh-Ritz bounds. 
Convergence criteria for Weinstein's method date back to Aronszajn and Wein- 
stein [2, 3] for problems with compact resolvent, and for Aronszajn's method to 
Aronszajn [1] and Bazley and Fox [5] for problems with compact resolvent and 
relatively bounded perturbations. The approximation method of Weinberger 
[30, 32], which is closely related to the method of intermediate problems (cf. 
[ 16]), is the first method for which convergence criteria were given in settings ad- 
mitting a nontrivial essential spectrum. For intermediate problem applications 
that admit nontrivial essential spectra and perturbations that are not relatively 
bounded-as occur, e.g., in many quantum mechanical eigenvalue problems- 
convergence results are relatively recent, including those of Beattie [9], Beattie 
and Greenlee [10], Brown [13, 14], and Greenlee [19]. 

Convergence rates for eigenvalues of intermediate problems were first derived 
by Weinberger [29] for Weinstein's method. Subsequently, Fix [15] and Birkhoff 
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and Fix [12] obtained convergence rates for Bazley's method of special choice 
[4] in the case of bounded perturbations, and Poznyak [25, 26] derived rate of 
convergence results for variants of Aronszajn's method with relatively bounded 
perturbations of the base operator. These results on convergence rates all depend 
on compactness in some fashion. Even less is known about convergence rates 
for eigenprojections and eigenvectors. Estimates such as those found in Kato 
[22], Weinberger [31], and Bazley and Fox [6], depend on both upper and lower 
bound information, while in [12, 1 5] convergence rates for the method of special 
choice have been obtained in the case of bounded perturbations. 

Herein we refine the rate of convergence estimates of our recent paper [1 1] 
for a particular method of Aronszajn type known variously as "truncation in- 
cluding the remainder" [9, 10], or as "Aronszajn's method with a truncated base 
problem" [19]. This method was first discussed by Bazley and Fox [8] who veri- 
fied two interesting features of the method. First, with an appropriate selection 
of trial vectors, this method dominates Weinberger's method and, secondly, this 
method is always dominated by Aronszajn's method without truncation. Thus, 
we simultaneously obtain convergence rates for other variants of Aronszajn's 
method as well. Truncation including the remainder is the only method of 
Aronszajn type known to be both computationally feasible and convergent for 
problems with nontrivial essential spectra. This method also requires relatively 
unbounded perturbations of the base operator whenever the operator of inter- 
est is itself unbounded, and, like Weinberger's method, can be employed for 
constraint problems (cf. [19]). 

In ?2 we formulate Aronszajn's method with a truncated base operator, and 
review previous results on convergence that are relevant to the sequel. The 
theorems of ?3 depend on an estimate of Kato [22]. Theorem 3.1 effectively 
squares the rate of convergence estimate for eigenvalues obtained in [11]. Both 
of these estimates depend strongly on implementation of a construction of [19] 
to estimate relatively unbounded perturbations by means of abstractly defined 
bounded perturbations. While this device enables one to estimate relatively un- 
bounded perturbations, it does not immediately yield convergence information 
for the eigenvectors actually constructed in the approximation method, contrary 
to a remark in [19]. Then, in Theorem 3.2, we derive estimates for eigenpro- 
jections and eigenvectors. While these estimates may be somewhat crude, they 
appear to be the first that are applicable in the presence of nontrivial essen- 
tial spectra and relatively unbounded perturbations without prior upper bound 
information. Finally, in ?4 we extend the technique of [11] for implementing 
the convergence rate estimates in differential eigenvalue problems so as to apply 
Theorems 3.1 and 3.2. For illustration we directly compare rates of convergence 
obtained from our theorems with rates derived in [12, 15] for approximation 
of Sturm-Liouville problems by the method of special choice, and provide two 
computational examples that illustrate the derived rates. 

2. THE APPROXIMATION METHOD 

Let Lj be a separable complex Hilbert space with norm u and inner prod- 
uct (u, v). Let A be a selfadjoint operator with domain 9 (A) dense in Sj. 
We suppose that A is bounded below with spectrum that begins with isolated 
eigenvalues of finite multiplicity, 
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Al1(A) < A2(A) < ..< Ac, (A), 

and corresponding orthonormal eigenvectors u1, U2,.... Here, AC,(A) de- 
notes the least point of the essential spectrum of A, where by convention we 
set Ac (A) = oc if the essential spectrum of A is empty. The closure of the 
quadratic form (Au, u) is denoted by a(u). 

To apply the method of intermediate problems, we require knowledge of 
another closed quadratic form ao(u), satisfying ao(u) < a(u) for all u E 9 (a) . 
Furthermore, we require that the spectral problem for the selfadjoint operator 
Ao corresponding to ao is solved explicitly, and that the spectrum of Ao also 
begins with isolated eigenvalues of finite multiplicity, 

Al (Ao) < A2(Ao) < ?< A,(Ao), 

with corresponding orthonormal eigenvectors uo, ....I . The second mono- 
tonicity principle implies that AOO (Ao) < AO (A), and that for each i such that 
ii(A) < coo(Ao), j(Ao) exists and Xj(Ao) < Ai(A). Without loss of generality 

we may assume that the difference between a and ao is strictly positive, i.e., 

a(u) = a(u) - ao(u) > aHUH2 

for some a> 0 and all u e (a). 
Now pick a real number y satisfying AI (Ao) < y < O,%,(Ao), with the re- 

striction that y < AOo(Ao) if Ao has an infinity of eigenvalues below Ao (Ao). 
Define the truncation of Ao at y by 

A-Y) - AoEy- [Ao] + y(I - Ey- [Ao]), 0 

where EA [Ao] is the right-continuous resolution of the identity for Ao . Observe 
that A(Y) has the same action as Ao on the finite-dimensional subspace 

0 

Woy = M(Ey- [Ao]) = Ey- [AO] * X, 

and acts as scalar multiplication by y on vectors in (oy)1. The corresponding 
quadratic form a0y) may be used to define a second positive form, 

a(u) = a(u) - 4(Y)(u) > a(u) > CIelU12. 

Obviously, 0(a) = 0 (a), a is a closed quadratic form, and the corresponding 
selfadjoint operator is given by A = A - A y) on (A) = 9(A). 

The method of approximation to be studied is simply Aronszajn's method 
with the truncated base operator A(Y) instead of the original base operator Ao 
(cf. [18, 19]). The method proceeds by selecting a set of trial vectors {pj}?=1 C 

B (A) and defining for each n 

n 
(2.1) PnU = E (u , 4pi) bijpj, 

i,j=l 

where [bij] is the matrix inverse to [(pi, Apj)]in . Then Pn is the projec- 
tion onto 3n = span{pl, ... , Pn} that is orthogonal with respect to the inner 
product induced by ai. 
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For each n, define the intermediate form 

an(u) = a(') (u) + &i(Pn u) 

for u E 0(an) = Si, with the corresponding selfadjoint operator 

An = A(Y) + APn. 

By construction, 
a(Y)(u) < an(u) < an+I(u) < a(u) 

for all u E 0(a), and thus the second monotonicity principle provides 

Ai(Ao) = Xi(A(Y)) '... < i(An) < i(An+l) < ... (A), 

for all i such that Ai(A) < y. Thus, the intermediate operators, {An}, have 
eigenvalues that provide improving lower bounds to the eigenvalues of A as the 
index n is increased. For discussion of practical issues involving computation 
of intermediate operator eigenvalues, see [7, 32, 33]. Convergence criteria for 
this approximation method are given by the following theorem [10]. 

Theorem 2.1. If the set of vectors {p1}ill is complete in J(A) with respect to 
the norm 11Aull, then limn,o0 Xi(An) = Xi(A) for each i such that Xi(A) < y, 
limn-,o Xi(An) > y for each i such that Xi(A) > y, and IJEA[A] - E[An1]11 -+ 0 
as n -+ oc for every <y. 

Our convergence rate estimates are motivated by the following conditions for 
exactness (cf. [1 1]). Define W/Y = 9(Ey- [A]) = Ey- [A] * S5, and let Pn* denote 
the adjoint of Pn in i, as usual. 

Theorem 2.2. Suppose the convergence criteria of Theorem 2.1 are satisfied. If 
for all n > N, 

(2.2) M(Pn) D W y + /oy/ 
then for all n > N, 

(2.3) _r (Pn) D WY, 

and furthermore, when (2.3) holds for n > N, then also Ai (An) = Ai (A) for all 
n > N and each i such that Ai(A) < y. 

It is thus appropriate to seek rate of convergence estimates in terms of a 
notion of separation between the "approximating subspaces", M (Pn7), and the 
"exact subspaces" WY + 'y . An appropriate measure of separation is the con- 
tainment gap for a subspace X' by a subspace X'. 

Definition 2.3. Let X# and X' be closed subspaces of S5 with dim X > 0. 
The containment gap for X' by X# is 

= sup I' 
- Qull = 11((I-Q)Pl, 

where Q is the orthogonal projection onto X# and P is the orthogonal pro- 
jection onto X. 

Unlike the gap of [23, p. 197], Jr(.) is not symmetric in X4 and X, and 
6, (.') = 0 if and only if X4 D .XV. We now state the basic estimate of [11]. 
Herein we let 0?A = 3;(Pp), and then one has A =0(P*. 
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Theorem 2.4. There exists a constant K > 0, independent of n, such that for 
each i satisfying Ai(A) < y, 

JAi(A) - i(An)| < K{3 (A34'n) + 3,-(A4An)} , 
where Y = ?oy and X = WY . 

Observe that the convergence criteria of Theorem 2.1 are not hypothesized 
in Theorem 2.4. Thus Theorem 2.4 immediately yields the following theorem, 
which is reminiscent of conditions for convergence of Weinberger's method [30, 
32]. Herein, cd(Z) represents the closure of a set Z in the underlying Hilbert 
space Sj. 

Theorem 2.5. If cf(Un1 AI9n3) D WY + WOy, then limn,,0 {i (An) = Ai (A) for all 
i such that Xi(A) < y. 

To improve on the estimate of Theorem 2.4, we use the following eigenvalue 
estimate due to Kato [22]. The estimate (2.5) for eigenprojections is contained 
within Kato's proof of Lemma 18.4 in [22], and is also developed in [ 18] together 
with the explicit eigenvector bound (2.6). As usual, 3k, denotes the Kronecker 
symbol. 

Theorem 2.6. For S a selfadjoint operator in X, let vl, ... , Vm E 9(S) be m 
vectors for which 

(Vk, VI) =3kl, (SVk, VI) = lk3klk, k, 1 = 1, ..., m, 
1 < q12 < ... < ? m, 

and let Ok = I(S - lk)VkHl, k = 1, ... , m. Further, let (c, d) be an interval 
whose intersection with the spectrum of S consists solely of eigenvalues of total 
multiplicity at most m. If c < rl, "m < d, and 

, Sk 
<15 

k= (<1k-,c)(d- < 

then there are exactly m eigenvalues A1 < A2? ... < Am of S in the interval 
(c, d), and they satisfy 

(2.4) - d -k < Al -r <, < k - C ,..,m 
k=I ~~~~k=i k 

Furthermore, if P is the orthogonal projection onto the m-dimensional sub- 
space spanned by the eigenvectors of S corresponding to A1, ... , Am, and 

6k= min{?lk - C, d - ?k}, then 

(2.5) IIPVk-Vkll <?k/3ka k =1,.. .,m. 

If m = 1 and w1 is the corresponding eigenvector of S normalized by lwi II = 1 
and (w1, vl) > 0, then 

(2.6) IIWl - VI112 < 20/212[l + (1 _ (02l/2))1/2]. 

3. CONVERGENCE RATES 

We begin with a rate of convergence estimate for the eigenvalues of A below 

y. The proof is based on an implementation of Theorem 2.6 by means of a 
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construction of [11, 19], which is also basic to the proof of Theorem 2.4. We 
sketch this construction in the course of the proof, but full details are available 
in[II, 19]. 

Theorem 3.1. Let Ah(A) = Ah+l(A) = = Ih+ml(A) be an eigenvalue of A 
below y with multiplicity m and corresponding eigenspace YS. Further, assume 
that the convergence criteria of either Theorem 2.1 or Theorem 2.5 are satisfied. 
Then for each j = h, h + 1, ..., h + m - 1, and all n large enough, 

(3. 1) lAj (A) -Aj (An ) I -< K{6 2X (AiYn ) +(In 

where J{ = WY, X =S0+ ?4Y, and K is independent of n. 
Proof. Consider the truncation of A at y, 

AM = AEy- [A] + y(I - Ey- [A]), 

and introduce the auxiliary selfadjoint operator, 

An = A(Y) + Pn*(A(Y) -A(Y)Pn 

It follows easily that (A' u, u) < (Anu, u) for all u E i, so 

IAj(A) - j(An)l < IAj(A) - Xj(A')l < IAj(A) - 1kl + lqk -j(An)l 

where q1k will be specified below. Evidently, it will suffice to prove that the last 
two terms are dominated by the right-hand side of (3.1). 

We now assume that A is bounded, and will treat the unbounded case later. 
We will employ Theorem 2.6 with S = A', (c, d) any isolating interval 
for Ah(A), and {Vkl}mI an orthonormal basis for the eigenspace 5'R which 
also diagonalizes the m x m matrix [(Anvk, vI)], yielding matrix eigenvalues 
?li <??12 < ?< ?m given by qk = (A'Vk , Vk), k = 1, . . ., m . Then 6k = 

(A'- k)vk, for k = 1, ... , m. The vectors Vk and the numbers qk , Ok 
may depend on n, but we are free to use a notation that suppresses that depen- 
dence. 

Thus, 

t1k - Ah(A) = 1k - (A(Y) Vk, Vk) = ((A' - A M) Vk, Vk) 

= ((Ao(Y + Pn (A(Y) - A AY) Pn A)vk, Vk) 

= ([(Pn* - I) (A(Y) - A(Y) (Pn- I) + (A(Y) - A(Y) (Pn - I) 

+ (Pn - I)(A(Y) - A(y))]Vk, Vk). 

Now, 
((Pn- I)(A(Y) - A(Y))vk Vk) 

= ((Pn* - I)(I - Qn)(A(Y) - A(Y) Vk, Vk) 

= ((I - Qn)(A(Y) - A(Y))vk, (Pn-I)Vk) 

where Qn is the orthogonal projection onto M (Pn*) = A3i7n. Hence, 

((Pn -I)(A(Y) - A(Y))vk Vk)l 

11 (I -Qn) (Q(Y)-(A) - Ay)V k 1(1 - Pn)vk 

? (Y -X1 (Ao))3v(A39n) H(I -Pn)vkH1, 
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where X' = SR + ?(4) The last inequality uses the facts that IIk = 1, 
(A(Y) - A ())vk = (Ah (A) - A ())vk E ,XV, and A A() - A < y - A1 (Ao) Now 
observe that, since A(I - PO) is selfadjoint, 

I(I-Pn)VkH < a-a11A(I-Pn)vkH1 = a-'II(I-Pn)AvkH. 

Since Pn and I - Pn are a-symmetric for each n, and a is bounded, we have 
the uniform bound IlPn -III = IIPn* - II < K, where K = 1A11/211 11A-1/211 with 
A'!2 the unique positive definite square root of A. Hence, 

11 (I- Pn)VkII1 < ae- 1 |(I -Pn*)(I -Qn)AVkII 

< a K I I(I -Qn) AWk I < Ce-'K (Y- A (AO)) 61r(,XYn), 

since IliVkll = 1 and AVk = (A - ))Vk = (Ah(A) - AoY))Vk * Thus, 

- ((Pn*-I) (A(Y) - Ay))vkk Vk)| = ((A(Y) - A(y))(Pn - I)Vk, Vk) I 

< a-'K(y -Al(AO) n), 

and similarly, 

I ((Pn -I) (A (Y)- A(y) ) (Pn-Iv,v - I)(A(~) A~~~-I)Vk, Vk)~ 

= ((A(y) - A(y))(Pn -I)Vk, (Pn -I)Vk) 

< (y-A X(Ao))H (Pn-I)vk2 a22(y- (AO)n). 

Thus, 
r- 

Ah (A) < K1 33 (APn), for some constant K1 independent of n. 
Note that 

Ok = [A (y) + (A' - A(Y)) - (Ah(A) + ((A' - A(y))vk, Vk))IVk 

= I[A'-AM - ((A' - A(y))Vk, Vk)]Vkl 

< IHA' -AM 11 

Furthermore, Lemmas 3. 1 and 3.2 of [ 1] together yield 

A'-A(y) 1 < C{3O (A37n ) + (A3g n )}E 

where Y = ?oy4, A = WY, and the positive constant C is independent of n, 
and so 

6k < 2 C2n{(A3 n ) + 3.(A3n)}. 

As n -+ oc, the convergence criteria imply that Ok -- 0 and 1k -- Ah (A) for 
each k = 1,2,...,m a nd that (A)-+ Ah(A) for each j=h, h + 1,..., 
h + m - 1 . The hypotheses of Theorem 2.6 hold for sufficiently large n, hence 
foreach j =h,h+1,...h+m-1 thereisanindex 1 <k(j) < m anda 
constant K2 independent of n such that 

-Aj (A')I < K2 02 < 2K2 C{3 y(APn) + g(APP)} 

The conclusion (3.1) now follows immediately. 
We now admit the possibility that A is unbounded and observe that the above 

proof does not apply, since in that case there may not be a bound independent of 
n for IIPn - Ill = IIPn* - Il I. This difficulty will be circumvented by employing a 
device of [ 19] which was also used in [ 11]. We assume without loss of generality 
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that the quadratic form (A(')u, u) is nonnegative and consider the auxiliary 
bounded selfadjoint operator 

A - A)-A(Y) 

where ,u is some fixed positive number satisfying ,u > y(1 + (2y/a)) + (a/2). 
Then the corresponding quadratic form satisfies a(u) > (a/2)HluH12 for all u E Si 
(cf. [19]). It follows that 

= a(Y)(u) +a(u), 

and we apply Aronszajn's method to this decomposition of a(8) in the following 
way. 

Given the trial vectors {pi}I?'I c EJ(A), generate {'I}I by Pi =A Api 
for each i = 1, 2 . Define projections P1 onto Y?A = span{p1, . -I?} by 

n z . 
Pnu= E (u'APi)biju j ueSj, 

i,i=l 

where [bij] is the matrix inverse to [(jii,AAij)]. Then Pn is an orthogonal 
projection with respect to the inner product induced by a(u) defined so that for 
each n, 

-1 (I-Pn%) = -1 (I-Pn%) and A9n = AY,'n. 

Moreover, a(Pnu) < & (Pnu) for all u E Sj (cf. [1 1, 19]). Hence, the intermediate 
operators 

A// = A(Y) +P n 0 P 

yield eigenvalues Ai(A") which for each i with Xi(A) < y satisfy Xi(A"') < 
Xi(An) < Xi(A), and Ai(A") --+ Ai(A(1)) = Xi(A) as n - oo. 

Now, since A(8) and A = A(8) - A<Y) are bounded, the preceding proof for 
the case of bounded operators yields a constant K independent of n such that 

-Aj (A ) j (A//) < K{3k (A ) + r(An) 

where X4 = W/Y and Y = 5 + Woy The proof is now complete, since 

ij(A(AU)) = Aj{(A) > Aj{(An) > A,j(A") and, by construction, A?9n = AY . ?l 

Since the proof of Theorem 3.1 actually proceeds by estimating the differences 
between the unknown eigenvalues and eigenvectors of the auxiliary operator 
A' and those of A, it fails to provide useful estimates for the eigenvectors or 
eigenprojections of An. Our next theorem provides such estimates, but yields 
eigenvalue estimates which are in practice not as good as those of Theorem 3.1. 

Theorem 3.2. Let Ah(A) = Ah+l(A) = -- = Ah+m-l(A) be an eigenvalue of A 
below y with multiplicity m and corresponding eigenspace Y?. Let P be the 
orthogonal projection onto Y?, and let P be the projection onto Y which is 
orthogonal with respect to the inner product induced by a . Further assume that 
the convergence criteria of Theorem 2.1 or of Theorem 2.5 are satisfied and that 
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llPn* 11 (An) -+ O as n- oc, where 1 = 9? + Wo/ . Then for each j =h, 
h + 1,..., h + m - 1, and all n large enough, 

(3.2) JAj(A)- j(An)l < K{H A"2(I- P)P I2 + 

and 

(3.3) RnP - Pll < KIIPn* 116(A/'(), 
where Rn is the orthogonal projection onto the m-dimensional space spanned 
by the eigenvectors of An corresponding to the eigenvalues {A (An ) h+m-1. In 

particular, if m = 1, n is large enough, and the eigenvector u'nJ of An corre- 

sponding to Ah(An) is normalized by IluHn]II = 1 and (u[n], Uh) > 0, 

(3.4) [un' - uh1? (3.4) ||~~~lUh ]Uh I|| < K I IPn |v (A9i7n). 

Herein, K is a generic constant independent of n. 
Proof. We use Theorem 2.6 with S = An, (c, d) any isolating interval for 
Ah(A), and {Vkl}km an orthonormal basis for the eigenspace 9' which also 
diagonalizes the m x m matrix [(AnVk, v)], yielding eigenvalues ?l < ?2 < 

*?*< m given by jk = (AnVk , Vk), k = 1, , m. Then 

q1k = (AVk, Vk) + ((An - A)Vk, Vk) 

= Ah(A) + (A(Pn - I)Vk, Vk) = Ah(A) + & ((Pn - I)Vk), 

so that 
klk - Ah(A)l ? nA'/2(P - 

and 
Ok = JI(An - ?k)Vkll = 1[A(Pn - I) - (A(Pn - I)Vk, Vk)]Vkll 

< IA(IPn - I)VkHll 

Thus, since A(Pn - I) is selfadjoint, 

Ok < I (Pn - I)AVk1 = I (Pn* - )(I - Qn)Avk11 

< (1Pn* 11 + 1)H(I - Qn)Avk11, 

where Qn is the orthogonal projection onto 3 (Pn*) = A37n . Now, Pn* ? 1, 
AVk = (Ah(A) - A('))vk E ., and 11AVk || < y - 1l (Ao) , so 

Ok < 21IPn 11 (y-Al (AO))-(,&n). 

By hypothesis, Ok -+ 0 and qk -- Ah(A) as n so, s Theorem 2.6 implies 
the conclusions of the theorem. Ol 

4. APPLICATIONS 

In order to apply the preceding estimates to differential eigenvalue problems, 
it is convenient to dominate the containment gaps of Theorems 3.1 and 3.2 in 
terms of spectral projections of an auxiliary operator B. Specifically, let B 
be a positive definite selfadjoint operator in Si such that O(B) c 0(A) and 

IlAuHll < )llBull, /3 > 0, for all u E O(B), with B-' compact. Let 
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be the eigenvalues of B enumerated as usual according to multiplicity, with 
corresponding eigenvectors {pi} orthonormal in Sj. If these vectors {pi} are 
employed as the trial vectors to construct the projection operators {Pn } of (2.1), 
then the following estimate is obtained in [11]. 

Theorem 4.1. Iffor all eigenvalues Xi(A) and Ai(Ao) less than y, both ui and 
(A - y) u? are in EJ(BT) with T > 1, then 

(4.1) 3(A5Dn)=o(jinjl) asn-? oc, 

where X = WY + 9jY . 

Herein, o is the usual Landau symbol, BK denotes the unique positive defi- 
nite Tth power of B, and we assume without loss of generality that y is in the 
resolvent set of A. Since both W/Y and 9' + ?4OY are contained in W/Y + 4/0Y, 
this provides a technique for implementing Theorem 3.1. 

A closely related, but simpler, analysis than that leading to (4.1) yields 

j1'A/2(f - Pn)PH12 = o(,uj1i2T) as n - oo, 

under slightly weaker hypotheses than those of Theorem 4.1. This reveals that 
as long as (4. 1 ) is used to estimate 3x (A4Dn), IV = 9" + ?oy, the eigenvalue 
estimate of Theorem 3.2 can only be as good asymptotically as that of Theorem 
3. 1 if { I I Pn* I I } is bounded, unless I lPn* 11,53 (APn) = 3 (, J(APn)) as n -+ 00 . We 
now estimate JJPn*JJ in terms of jin, so that Theorem 3.2 may be applied to 
obtain eigenvector and eigenprojection estimates in differential problems. 

Theorem 4.2. One has IIPn I = II Pn* I < (9 /a),Un . Further, let b(u) be the closure 
of the quadratic form (Bu, u). If also 9(a) c 92(b), and there exists p > 0 
such that pb(u) < a(u) for all u E 0(d), then 

(4.2) n < (fip) 

Proof. Recall that Bpi = /1ipi, and take (pi, Pj) = 3ij. Further select vectors 
ql, ..., qn satisfying span{ql, ... , qn} = span{pl, ..., Pn = n D (qi, qj) = 

5ij, &(qi, qj) = qi3ij with 1 <- 12 <? <? In. Then 

Pnu (u, Aqi) qi 
i=i 

so that 

Pnu = (u, qi)Aqi. 

Define a, , an by 
n(u, n). 

qi aipi. 

Then, 

Pn*u = AB1 ( ailiipi) 
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i.e., 
Aou = -u" in (0, 1), u(O) = u(1) =0. 

If we take B = Ao, so that Pk = Uk and Uk = = k272, both (4.1) and (4.2) 
apply. To find T in (4.1), first note that with A-j (A), 

Buj =Aouj = Ajuj-quj E H2(0, 1) n Ho' (0, 1), 

and so 
A2u= (A/ - 2Ajq + q2 + q")uj + 2q'u' E H1 (0, 1), 

so that uj E QJ(BT) = QJ(AT) for all T < 9/4 (cf. either of [17, 20]). In 
addition, 

AO(A-y)-'u? =u + (y-q)(A-y)-'u0 cE H2(0, 1) n Ho'(0, 1), 

and 
A2(A -y)-u- = (Aj + y-q)uuQ + q"(A - y)-luo 

+ 2q'[(A - y)-lu]' + (y - q)2(A - y)-uQ E H1(0, 1), 

so that (A - y) u? E QJ(AT) for all T < 9/4. Thus, since ,Un = AO = n2712 

Theorems 3.1 and 4.1 yield 

JAj(A) - )j(An)l = o(n-3) as n -- oo for all ' < 5. 

If we were to integrate by parts on the expressions for Ao uj and A2(A-y)-Iuq 
as in [12], we could improve this estimate to O(n-5) as n -+ oc, which is the 
convergence rate given in [12, 15] for the method of special choice. Since the 
eigenvalues of A are simple, Theorem 3.2, Theorem 4.1, and (conclusion (4.2) 
of) Theorem 4.2 now give the eigenvector estimate 

llui - U,I = o(n-5) as n -oc for all < 3/2, 

which would improve to O(n-3/2) by use of integration by parts in the fashion 
mentioned above. The special choice rate of [12, 15] is O(n-512). 

In order to illustrate the derived eigenvalue rate in this setting, we consider 
the parabolic cylinder equation, which is obtained by setting q(x) = x2 above. 
Intermediate problems are constructed as described in ?2, using base problem 
eigenfunctions to define the projection subspaces Yn = span{u?0 ug?, ..., u?}. 
The value of y is fixed at 90.0, leaving three base problem eigenvalues below the 
truncation point. Resolution of the resulting intermediate problem of order n 
requires the solution of a generalized matrix eigenvalue problem of dimension 
3 + n given by 

(5.1) [~~G H] [x2] ( [O S] [x2] 

where R = diag{Hlu7I2/(40 - y)}, S = [(Pk, Ap1)], F = diag{Iju01[2}, G - 

[(u?, Ap1)], and H = [(Apk, Apl)]. Calculations were performed on a Sun 
3/60 workstation in double precision (unit roundoff . 1.1 x 10-16). The QZ 
method [24] was used to solve the matrix eigenvalue problem (5.1). Matrix 
eigenvalues associated with bounds were computed to an estimated relative ac- 
curacy exceeding 10-12. A selection of results is listed in Table 1 and summa- 
rized graphically in Figure 1. Complementary upper bounds were found with a 
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TABLE 1. Parabolic cylinder equation 

Base Intermediate Problem Size Rayleigh-Ritz 
Index Problem n = 5 n = 10 n = 20 (n-40) 

1 9.8696 10.151163761501 10.151164018432 10.151164030016 10.151164030453 

2 39.478 39.799390484344 39.799392917539 39.799393000748 39.799393003660 

3 88.826 89.153654454880 89.15432875850o 89.154342048421 89.154342456268 

Script-size digits represent a contribution smaller than a posteriori estimates of accuracy. 

Rayleigh-Ritz calculation of order 40, using base problem eigenfunctions as trial 
functions. In order to gauge rates of convergence, Figure 1 presents eigenvalue 
bracket widths plotted against intermediate problem order n, on a log-log scale. 
Parallel linear asymptotes are evident in each case, with calculated slopes lying 
between 4.95 and 4.98. This is within a 1% deviation from the theoretically 
predicted asymptotic slope of 5. 

If, for the general Sturm-Liouville problem above, the potential q(x) E 

C3(0, 1) also satisfies the additional condition q'(O) = q'(7) = 0, then A2uj 
and A2(A-y)l u? are in Hi (0, 1), so that uj and (A-y)-l u? are in 2(A5/2). 
Hence, 

jAj(A) - )i(An)j = o(n-6) as n -o 

and 

1un] - ull = o(n-2) as n o oo. 
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FIGURE 1. Parabolic cylinder equation 
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More rapid rates of convergence follow from additional smoothness of q and 
the vanishing of additional derivatives of q at 0 and 1 . 

Still more rapid rates occur if we were to consider periodic boundary con- 
ditions in the preceding. That is, let S5 = L2(0, 1), let q be the restric- 
tion to (0, 1) of a nonnegative periodic C?? function with period 1, and for 
u E {v E H1(O, 1): v(O) = v(1)} let 

I 

a(u) = U 12 + qIU12) dx. 

This means 

Au = -u" + qu in (0, 1), u(O) = u(1), u'(0) = u'(1). 

Take 

ao(u) = J Iu'12 dx, u E 2(ao) = 2(a), 

which means 

Aou= -u" in (0, 1), u(O) = u(1), u'(O) = u'(1). 

The methods of the preceding example may be followed to obtain an "infinite 
order of convergence" for the eigenvalues and eigenprojections, i.e., o(n-3) for 
every 3 > 0. These conclusions are the same as for the method of special 
choice [12, 15]. This rapid estimate for the eigenvalues also follows from the 
estimate of [11]. 

As a final example, for u E H1 (R1) let 

a(u) = J U(,u12 + qIU12) dx, 
-00 

where q E C(1(R) nf L2(R) is even with q(0) < 0, q is strictly increasing on 
[0, xl ] to a positive maximum at xl, and q is decreasing on [xl, oo) with q 
and all derivatives of q tending to zero at infinity. Some of the conditions on q 
can be relaxed in the following, but these hypotheses are consistent with typical 
potential well considerations in quantum mechanics and provide for ease of 
exposition. Then, with e = L2(R1), B2(A) = H2(R1), the eigenvalue problem 
for A means 

(5.2) -u" + qu =Au on R, u E L2(R1). 

Let xo be the unique zero of q in (0, xl). An explicitly solvable lower 
bound problem is obtained from 

(5.3) -u" +qou=)Au onR1t,uEL2(R ), 

with qo the "square well" potential: 

qo (x) q #() + Y -xo < x < xo, 

I IXI > XO. 

Herein, y < 0 is great enough that all negative eigenvalues of A are less than 
y . The negative number y will, as previously, be our truncation point-and has 
been added to the usual square well potential so that a(u), and therefore a (u), 
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are positive definite. This eigenvalue problem is obtained from the quadratic 
form, 

ao(u) = 0 (lu/l +qoIU12) dx, u E H'(R), 

and 9 (Ao) = 4 (A) = H2 (R) . 
To implement Theorem 4.1, let B be the harmonic oscillator, i.e., 

B = d2+x 
dX2 

with ?4(B) - H2(1R) n 9(x2), where, as usual, 

4(X2) = {u E L2(R1): J x41u(x)12dx < co}. 

Then B is selfadjoint on ?4(B) (cf. [28]), and Pk = 2k - 1. An analysis like 
that of the preceding examples and pp. 225-226 of [11] yields uj E ?4(BT) for 
all T> 0, but only (A - y)' u5? E4 (BT) for all T < 9/4, owing to the jumps in 
q0 at +xO . On the other hand, if q0 was in C0?? (R1), we would have (A - y) u? 
in ?4(BT) for all T> 0, and thus an infinite-order convergence, but the spectral 
problem for the base operator would not be explicitly solvable. We wish now 
to show that Lemma 3.5 of [10] can be used to convert this observation into a 
proof of an infinite order of convergence of the eigenvalues, starting from the 
square well base problem. 

So let V0 E Cc'(R1) be such that V0 - y E Co??(R1) and V0 < q0. Further, 
let A0 denote the one-dimensional Schrodinger operator corresponding to VO. 
By regularization, such V0 may be constructed to approximate q0 within any 
desired tolerance in L 2(R) (cf. [21]). Then, since 

J qo - VO)U|2 dx < |UHIL OO(R) *2qo- VO 2(R) < HUI(R) Ilqo - VoIL2(R) 
-00 

for all u E H1 (R1), it follows that A0 can be chosen to approximate Ao arbi- 
trarily closely in the norm resolvent sense (cf. [27]). Thus, we may assume that 
A0 and Ao have the same number of eigenvalues below y, and then, given 
e > 0, there exists such a V0 satisfying 

IIA(Y)u - A(Y)ull = Z[Ai (Ao) - y](u, uj(AO))uj(AO) 

- Z[)i(AO) - y](u, uj(AO))uj(AO) 

? {21Ai(Ao)-yj (Z lluj(Ao)-ui(Ao)j) + E(ZA(Ao)-)j(Ao))} Ilul 

<e1jull forall uEL2(R)), 

where the summation is over all eigenvalues below y. Then, for each u e Si= 
L2 (R) , 

(A(I)u, u) -_ KI2 < (A(I)u, u), 

i.e., 
((Ao - e)(e) u, u) < (A(I)u, u). 

As noted above, the intermediate problem eigenvalues obtained from the 
truncated base operator (Ao - g)(Y-E) have an infinite order of convergence. But 
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by Lemma 3.5 of [10], these give lower bounds for the intermediate problem 
eigenvalues obtained from the truncated base operator A('). Hence, 

JAi(A) - Ai(An)l = o(n-5) as n -oo for all 3 > 0. 

In order to illustrate this last result, consider the one-dimensional Schrodinger 
operator (5.2) with potential defined by 

q(x) = b(x2 - a2) exp(-CX2). 

We take (5.3) as base operator, with xo = a. For convenience, we restrict 
ourselves to the even symmetry class of functions solving (5.2) and (5.3). The 
lower spectrum of Ao is resolvable and consists of simple eigenvalues that are 
solutions in A to 

cot(a/V + y + ba2) = A + ) 

lying in the interval (y - ba2, y) . The lowest point of the essential spectrum of 
Ao is given by y, and the number of eigenvalues of Ao smaller than y (repre- 
sented herein as M) is equal to the greatest integer smaller than (a2VrI/7) + 1 . 
These eigenvalues below y are labeled as before, AO< < ... < AO . The 
corresponding (unnormalized) eigenfunctions of Ao are given by 

I exp (-a <Al )cos )L?+ba2_yx) -a < x < a, 

l cos ( Al + ba2 y) exp (- # AIxI) otherwise. 

Intermediate problems are then constructed as described in ?2, using even- 
ordered Hermite functions to define the projection subspaces Y'n = 
span(p1,P2, P ... , Pn) (i.e., Bpk = (4k - 3)Pk for k = 1, 2, ..., n ). Simi- 
lar to what was done before, resolution of the resulting intermediate problem 
of order n requires the resolution of a generalized matrix eigenvalue problem 
of dimension M + n, given by (5.1). 1 In turn, these inner product matrices 
may be expressed in terms of the four basic inner product matrices: [(u7, pj)], 
[(u?, Apj)], [(Api, Ap1)], and [(Api, pj)]. Analytical expressions may be ob- 
tained for [(Api, pj)] and [(Api, Ap1)]. However, inner products involving the 
base problem eigenvectors {u?} must be evaluated through quadrature. For rea- 
sons of economy and precision, the matrix elements [(u?, pj)] and [(uO, Apj)] 
are determined from recurrence relations that are derivable from the basic three- 
term recurrence for Hermite polynomials. With this approach, transcendental 
function evaluations are reduced to the evaluation of the complementary error 
function, erfc z, and the quadrature of 

jacos (x2.7 +ba2 - y exp(-x2/2)dx, 

for i= 1, 2, ..., M. 
1 Accurate calculation of the inner product matrices is a fairly involved undertaking in this 

case. The authors are grateful to Mr. Gyou-Bong Lee for painstaking technical assistance in the 
computations described here. 
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TABLE 2. Radial Schrodinger equation 

Base Intermediate Problem Size Rayleigh-Ritz 
Index Problem n = S n = 10 n = 15 (n = 20) 

1 -17.764 -16.530730252641 -16.530730006082 -16.530730006081 -16.530730006081 

2 -15.885 -10.712190146655 -10.711982838692 -10.711982836444 -10.711982836444 

3 -12.162 -5.0350514466695 -5.0116193956448 -5.0116181724517 -5.0116181724446 

4 -6.7072 * * * * 

Script-size digits represent a contribution smaller than a posteriori estimates of accuracy. 
* indicates a computed value above the lowest point of the essential spectrum. 

Results are reported here for a = 3, b = 2, and c = 0.01. Calculations 
were performed on a VAX 8800 in double precision carrying a unit roundoff 

O 1.4 x 10-17. Numerical quadratures were carried out in extended preci- 
sion (mantissa length of 1 12 bits) using a globally adaptive 21 point/i 0 point 
Gauss-Kronrod scheme to an estimated relative accuracy of 10-14 . As before, 
the matrix eigenvalue problem (5.1) was solved using the QZ method [24] with 
eigenvalues participating in bounds found to a relative accuracy of better than 
10-11 . An order-20 Rayleigh-Ritz calculation using even-ordered Hermite trial 
functions was performed to provide complementary upper bounds. Table 2 
provides a sampling of these results for three intermediate problem orders. In 
Figure 2, the resulting eigenvalue bracket widths are plotted against intermediate 
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FIGURE 2. Radial Schrodinger equation 
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problem order n, on a log-log scale. Notice that no linear asymptote is apparent 
for any of the three error curves-consistent with the predicted infinite order 
of convergence. 
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